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1. Introduction

There have been significant efforts in

computational mechanics to describe the

behavior of concrete using various proposed

models. As the softening zone is known to result

from the formation of microcracks, the strain

softening is one of the most important aspects of

concrete behavior. As well as the hardening

behavior which occurs under compressive

loading, a constitutive model for concrete

materials should represent the softening behavior

correctly. The stiffness degradation is another

important issue to simulate the crack opening and

closing under cyclic loading. 

The cracking process in concrete can be

categorized into several approaches including

discrete crack, smeared crack, damage mechanics

and plasticity-based models. Among different

versions of plasticity-based models, the plastic-

damage constitutive law is a suitable approach to

simulate concrete behavior due to its capabilities

of including not only inelastic strain but also

stiffness degradation. It is well recognized that

cracking reduces the stiffness of concrete

structural components. Therefore, in order to

accurately model the degradation in the

mechanical properties of concrete, the use of

continuum damage mechanics is necessary.

However, the concrete material also experiences

some irreversible deformations during unloading

such that the continuum damage theories cannot

be used alone. Therefore, the nonlinear material

behavior of concrete can be precisely simulated

by two separate material mechanical processes:

damage and plasticity.

Plasticity theory has been widely used alone to

describe the concrete behavior [1-4]. The main

characteristic of these models is a plasticity yield

surface that includes pressure sensitivity, path

sensitivity, non-associative flow rule, and work

or strain hardening. However, such models failed

to address the degradation of the material

stiffness due to micro-cracking. On the other
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hand, the continuum damage theory has been also

employed alone to model the material nonlinear

behavior such that the mechanical effects of the

progressive micro-cracking and strain softening

are represented by a set of internal variables

which act on the elastic behavior (i.e. decrease of

the stiffness) at the macroscopic level [5-7].

Furthermore, concrete behavior has several

aspects such as irreversible deformations,

inelastic volumetric expansion in compression,

and crack opening/closure effects that cannot be

represented by the two above-mentioned

methods alone. Since both micro-cracking and

irreversible deformations are contributing to the

nonlinear response of concrete, a constitutive

model should address equally the two physically

distinct modes of irreversible changes.

Combinations of plasticity and damage are

usually based on isotropic hardening combined

with either isotropic (scalar) damage or

anisotropic (tensor) damage. Isotropic damage is

widely used due to its simplicity such that

different types of combinations with plasticity

models have been proposed in the literature.

There are two approaches for this combination.

One relies on stress-based plasticity formulated

in the effective (undamaged) space [8-11] and

another alternative is founded on stress-based

plasticity in the nominal (damaged) stress space

[12,13]. However, the coupled plastic-damage

models formulated in the effective space are

numerically more stable and attractive [9,14].

The purpose of this paper is to discuss

computational issues involved in the modeling of

plain concrete in view of an approach which

takes advantages of both plasticity and damage

mechanics alternatives. The model referred to as

plastic-damage in literature employs two internal

variables as the damage parameters in tension

and compression separately. This constitutive

model was originally proposed by Lubliner et al.

[12] and later modified by Lee and Fenves [15].

It is also worthwhile to mention that in this latter

study, computational aspects of the 3-D

formulation are also briefly presented along with

the more complete 2-D examples with plane

stress behavior from numerical implementation

point of view. In 3-D space, the process of return-

mapping needs to be reformulated due to

employing a hyperbolic potential function to treat

the singularity of the original linear form of

plastic flow proposed by Lee and Fenves. In the

present study, the details of 3-D implementation

of the model are discussed. Moreover, a special

finite element program is developed in that

context which is generally ideal for three

dimensional nonlinear analyses of concrete

structures under cyclic loading. It should be

added that in the present work, the rate-

independent plasticity and the isotropic

continuum damage mechanics theories are

applied to the elastic and inelastic constitutive

laws. Additionally, the infinitesimal deformation

theory, which is reasonable and adequate for

concrete, is assumed as well.

An outline of the remainder of this paper is as

follows: In Section 2, the framework of the

plastic-damage model is summarized. It includes

the basic concepts emphasizing on uniaxial state

in tension and compression and then multiaxial

behavior. This section is followed by introducing

the stiffness degradation which plays an

important role in cyclic loading states. The yield

and potential functions utilized in the study are

introduced at the end of this section. In the next

section, the computational issues involved in the

numerical integration of the model are discussed.

Section 3 also presents the procedure used for the

stress calculation of each Gauss point within

global iterations. Moreover, the algorithmic

tangent stiffness which accelerates the

convergence rate in the nonlinear global solution

is formulated in that part. Finally in Section 4,

some numerical simulations including several

one-element validation tests and two real

applications are presented to demonstrate

different features of the model and to establish

comparisons with some available experimental

data.

2. Theoretical Basics of Plastic-Damage Model

Based on the incremental theory of plasticity,

the strain tensor, , is decomposed into the elastic

part, , and the plastic part, :

(1)
e p  

pe
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The elastic part is defined as the recoverable

portion in the total strain, which for linear

elasticity, is given by:

(2)

where the elastic stiffness, E, is a rank four

tensor, and is the stress tensor. Based on

equations (1) and (2), the stress and strain

relation can be written as:

(3)

If scalar damage in stiffness degradation is

assumed, the elastic stiffness is defined as:

(4)

where D is the degradation variable and E0 is

the initial stiffness tensor. Substituting equation

(4) into equation (3) leads to the following

relation:

(5)

This equation may also be written as:

(6)

where is denoted as the effective stress,

given as:

(7)

According to equation (6), the constitutive

relation for elastoplastic response is decoupled

from the degradation damage response, which

provides advantages in the numerical

implementation. Therefore, the strength function

for the effective stress is used in this model to

control the evolution of the yield surface, such

that calibration with experimental results

becomes convenient. 

The plastic strain rate, which is evaluated by a

flow rule, is assumed to be related to a scalar

potential function . For a plastic potential

defined in the effective-stress space, it is given

by:

(8)

where and is a nonnegative

function referred to as the plastic consistency

parameter. In addition to the plastic strain,

another internal variable set is required to

represent the damage states. Consequently, it is

assumed that the plastic-damage variable k is the

only necessary state variable and its evolution is

expressed as:

(9)

As shown later, the function H can be derived

considering plastic dissipation. At this stage,

uniaxial behavior of concrete is initially

considered for tension and compression in order

to describe the basic concepts of the model.

Subsequently, this is extended to multiaxial states

under complex loading utilized for a general 3-D

implementation.

2.1. Definition of Damage Variables

The model utilizes two damage variables to

represent tensile and compressive damage

independently, which is required to simulate

concrete behavior under cyclic loading. These

damage variables would have values within the

range of zero to one. Considering a uniaxial state

of stress, the state variable is introduced.

In that respect, tension and compression states

are denoted by t and c, respectively.

Accordingly, each uniaxial strength function is

expressed in terms of its corresponding plastic-

damage parameter, k . In the Barcelona model

(i.e., initial form of the plastic-damage model)

which was originally proposed by Lubliner and

co-authors [12], the uniaxial stress is assumed to

be related to the scalar plastic strain variable

symbolized by : 

(10)

where a , b are constants, and f 0 is the

initial yield stress, defined as the maximum stress

without damage. The above strength function is

assumed to be factorized as:

(11) (1 )D  

p(

t, c

 

p

p p
  0

( )

    (1 )exp( ) exp( 2 )

f

f a b a b

( , ) H  

p   

p
0 : ( )E  

(1 )D  

p
0(1 ) : ( )D E  

0(1 )DE E

p: ( )E  

e 1 :E  
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In this relation, D and are defined as the

degradation damage variable and the effective

stress response for the uniaxial state ,

respectively. It should be mentioned that the

degradation damage variables are also defined as

increasing functions of plastic-damage variables.

They can take values from zero, corresponding to

the undamaged concrete, up to one, which

represents fully damaged concrete. An

exponential form is normally assumed for the

degradation, D , as below:

(12)

where c is a constant. Thus, the effective

stress can be written as follows based on

equations (10), (11) and (12): 

(13)

The uniaxial stress curves are illustrated in Fig.

1. It is noted in these diagrams that total strain is

decomposed into two parts, the elastic strain

and the plastic part .

Furthermore, the plastic-damage variables in

tension and compression are defined based on the

following relations [12,15]:

(14)

where g is the specific fracture energy,

defined as the fracture energy normalized by the

localization size zone, also referred to as the

characteristic length, l (i.e., g = G / I ). It is

noted that .

Substituting Eq. (10) into Eq. (14) yields the

relation between k and , which can be

substituted back into equation (10) to express the

uniaxial stress in terms of  k , i.e., .

Similarly, the effective stress and degradation

damage variables can be stated in terms of k as

and , respectively. It

is also worthwhile to mention that the parameters

utilized in equation (13) (i.e., a , b and c )

could be determined by employing the usual

parameters defined in Fig. 1, as well as some

additional enforced values of tensile degradation

at  and compressive degradation

at [9,15].

2.2. Damage Evolution in Multiaxial Behavior

By utilizing Eqs (10) and (14), the damage

evolution equation for the uniaxial state can be

written as [9]:

(15)

To extend the uniaxial version of damage

evolution equation to the multi-dimensional case,

the scalar plastic strain rate in Eq. (15) is

assumed to be evaluated in the general three-

dimensional case by the following relation: 

(16)

where is Kronecker delta  and , are

the algebraically maximum and minimum

eigenvalues of rate of the plastic strain tensor,

respectively. The scalar quantity is a weight

p(

ˆ( )r

p
max

ˆ , p
min

ˆ

p p p
t max c min

ˆ ˆˆ ˆ( ) (1 ( ))r r  

p

c cmf (i.e., cD )
  t t00.5 f (i.e., tD )

( )D D( )f

( )f

p

0 1

e

p1 ( )f
g

 

p
p p

 0  0

 1 d  ;   d
 

 g  
g

 

p

1 2p p
  0

( )

    (1 ) exp( ) exp( )
c c
b b

f

f a b a b
 

p
 1 exp( )D c  

Fig. 1. Uniaxial local curves : (a) in tension, (b) in
compression
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factor, which is within the range zero to one.

Denoting the ramp function as  ,

is defined by:

(17)

As two plastic-damage variables are

independently used in tension and compression,

the plastic-damage vector is defined as

. Substitution of eq. (16) into eq. (15)

results in an evolution equation for the general

case in the form of:

(18)

where h in matrix notation is written as:

(19)

Furthermore, the flow rule in eq. (8) can be

modified into one for  :

(20)

By substituting Eq. (20) into Eq. (18), the

damage evolution equation can be written as:

(21)

2.3. Stiffness Degradation

The degradation of stiffness, which is caused

by microcracking, occurs in both tension and

compression and becomes more significant as the

strain increases. Under cyclic loading, the

mechanism of stiffness degradation gets more

complicated due to opening and closing of the

microcracks. Since the scalar degradation, which

is assumed to depend on only k, is considered in

the present study, exact simulation of the

complicated degradation phenomena is very

difficult. As the model is accurately capable of

capturing two major damage phenomena, the

uniaxial tensile and compressive ones,

degradation in multi-dimensional behavior can

be possibly evaluated by interpolating between

these two main degradation damages such as:

(22)

Where both Dt and Dc are defined in equation

(12). Eq. (22) does not capture the correct crack

opening/closing behavior, which can be

implemented by elastic stiffness recovery during

elastic unloading process from tensile state to

compressive state. Thus, D is modified by

multiplying the tensile degradation in eq. (22) by

a parameter which is a function of the stress state,

:

(23)

where and is referred to as the stiffness

recovery factor. A possible form of s is:

(24)

in which r is defined in Eq. (17) and s0 is a

constant to set the minimum value of s [9]. It is

also apparent that due to scalar

degradation assumption.

2.4. Yield Surface 

Since concrete behaves differently in tension

and compression, the plasticity yield criterion

cannot be assumed to be alike. Considering the

same yield surface for both tension and

compression in concrete materials can lead to

over/under estimate of plastic deformation

[12,15]. The Mohr-Coulomb criterion is the most

well-known yield function for frictional materials

such as concrete. In this model, the J3 term is

included to make the yield surface more realistic.

In Lubliner's model, the algebraically largest

principal stress is used instead of J3 [12]. This is

also adopted in the present study. The yield

surface is expressed here in terms of effective

stress tensor and the plastic-damage variables as:

(25)

where parameters and are the first and

second invariants of the effective stress tensor.

t
1I 2J

  max c
ˆ ( )c  

ˆˆ( ) ( )r r

0 1s

 ˆ( )s

pˆ

T
t c( )

( ) / 2x x x
ˆ( )r

pˆˆ( , ) :h  

3 3

i i
i 1 i 1

ˆ ˆ ˆ( )r   

t t
t

c c
c

ˆ( ) ( ) 0 0
ˆ( , )

ˆ(1 ( ))0 0 ( )

r f
g

r f
g

h

   1 2 max
1 ˆ( , ) 3 ( )

1
F I J

  0 0ˆ ˆ( ) (1 ) ( )s s s r  

   c tˆ1 (1 ) (1 ( ) )D D s D  

 c c t t1 (1 ( )) (1 ( ))D D D  
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The maximum principal stress is also denoted by

. Moreover, a is a dimensionless constant and

it depends on the ratio of yield strengths under

biaxial and uniaxial compression, ( i.e., fb0 / fc0):

(26)

Originally, Lublinear et al. presented and

as constant parameters [12]. However, Lee and

Fenves [9] later modified as a dimensionless

variable which is written as a function of the two

plastic-damage parameters, kt and kc :

(27)

where ct and cc ,which are equal to and

, denote the effective tensile and compressive

cohesions (positive values utilized here),

respectively. Moreover, is the ratio of

corresponding values of for tensile and

compressive axes at any given value of the

hydrostatic pressure, . It is usually assumed as a

constant, with a typical value of 2/3 for concrete

[12], which results in the value of =3. Since the

influence of coefficient disappears in stress states

other than triaxial compression (i.e., < 0), the

corresponding term in Eq. (25) can be viewed as a

minor modification to improve the predictive

capability of the model under stress states other than

the plane stress conditions. Moreover, the yield

surface can be represented alternatively as

[16].

2. 5. Plastic Potential Function

The non-associative plasticity flow rule, which

is important for realistic modeling of the

volumetric expansion under compression for

frictional materials such as concrete, is employed

here. The Drucker-Prager linear function was

utilized by Lee and Fenves in their 2-D studies

[9,16] as the potential flow:

(28)

where the parameter ap should be calibrated to

give proper dilatancy [9]. It is well-known that

this type of surface has a singularity at the apex.

Although this will not cause any difficulty for the

plane stress 2-D condition considered by Lee and

Fenves [9], it would be problematic for the 3-D

implementation of the present study and it

requires special attention. The strategy chosen

herein is to employ the Drucker-Prager

hyperbolic function as equation (29) which has

been depicted in Fig. 2 as well.

(29)

where 1 is a parameter which adjusts how the

flow potential approaches its corresponding

linear function. Since the hyperbolic function is

continuous and smooth, the flow direction is

always uniquely defined. 
ˆ ˆ( , ) ( , )F F

max
ˆ

t
1I

2J

c

c c( )f
t t ( )f

1
ˆ
n

 c c c

t t c

( ) 3 (1 )( ) (1 ) (1 ) ;   
( ) 2 1

c
c

  

b0 c0

b0 c0

( ) 1
2( ) 1
f f
f f

 
2

 H 2 p 1 H 1 p t0( ) 2  ;   J I f  

 2 p 1( ) 2 J I  

Fig. 2. Drucker-Prager hyperbolic function along with its asymptote in the meridian plane
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3. Numerical Implementation

3.1. Linearization of Damage Evolution Equations

The damage evolution equation (i.e., Eq. (21))

can be expressed in discrete form based on the

backward-Euler method:

(30)

This may also be rewritten as:

(31)

where is used instead of for simplicity.

Since the above equation is a nonlinear relation,

an iterative solution scheme for the effective

stress, k and is required to be carried out (this

is referred to as the local iteration). For this

purpose, the Newton-Raphson approach is

utilized here [9]. The residual for Eq. (31)

denoted by Q is:

(32)

This residual equation, which needs to be

satisfied (i.e.,Q=0), is iterated using the Newton-

Raphson scheme as:

(33)

in which dQ / dk is the Jacobian matrix and

is used to update the plastic-damage vector, kn+1 :

(34)

The local iteration scheme, which actually

plays the role of the return-mapping process in

this model, is summarized in Table 1. The

required formulas to compute and that are

employed in this procedure will be derived in the

following sections.

3.2. Stress Computation

From a numerical point of view, the nonlinear

behavior of concrete model may be treated as an

implicit time discrete strain-driven problem.

Accordingly, the time discrete equations of the

model are integrated over a time interval

using an implicit backward-

Euler scheme, which is unconditionally stable

[16,17]. The stress and the plastic strain at step

n+1 are expressed as:

(35)

From Eq. (6), the stress can be written in the

following form:

(36)

Moreover, based on Eq. (7), the effective stress

becomes:

(37)

where the trial effective stress, denoted by

, is defined as:

(38)

The above procedure for computation of stress

tensor can be interpreted as the three-step

predictor-corrector method:

1) Elastic predictor:

2) Plastic corrector: -E0: 

3) Damage corrector:  -Dn+1 1
ˆ
n

p

tr
1n

tr
1n

1( , )n n nt t t t

1
ˆ
n

1 1
ˆ( , ) n nH  

   1 1 1 1 1
ˆ ˆ( , , ) ( , ) n n n n n nQ H

1 1 1
ˆ( , ) n n n nH  

( )
 1

 

( )

1

j
n

j

n

d
d

Q Q  

( 1) ( )
1 1

j j
n n  

tr p
1 0 1: ( )n n nE  

 

p
1 0 1 1

tr p
1 0

tr p p
1 0 0

: ( )

      :

      (2 )

n n n

n

n G

E

E

e I

 

1 1 1(1 )n n nD  

p p p
1 1 ;   n n nn  

0. tr (0)
1 1 1

ˆ ˆ0;  ; n n nnj + + += = =σ σ κ κ   

1. Obtain λ  
2. Compute 1

ˆ
n+σ  

3.   
( ) ( ) ( )

 11 1 1
ˆ( , )j j j

n nn n nλ ++ + += − + +Q κ κ H σ κ  

4. IF   ( )
L1   j

n Tol+ ≤Q   THEN    Exit. 

5. Form ( )
1( ) j

nd d +Q κ  

6. Solve ( )
 1

 

( )

1

δ

j
n

j

n

d

d +
+

  = −
 

 

Q
κ Q

κ

  for δκ  

7. ( 1) ( )
1 1 δ

j j
n n

+
+ += +κ κ κ  

8. 1j j= +    and   GOTO   Step 1. 
 

Table 1. Return-mapping process (local iteration)
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The damage part is implemented separately,

because it is decoupled from the plastic corrector

part. The backward-Euler scheme is used to

integrate the plastic strain:

(39)

Using the mentioned flow rule, the increment

of plastic strain can be rewritten in the split form

as:

(40)

(41)

in which, denotes the deviatoric part of the

effective stress and . Moreover, by

substituting Eq. (41) into Eq. (37), the effective

stress is reformulated as:

(42)

If the deviatoric and volumetric parts in Eq.

(42) are separated and slightly manipulated, the

following relations can be concluded:

(43)

(44)

(45)

where and denote the deviatoric part and

the first invariant of the trial effective stress,

respectively.

When principal stress terms exist in a yield

function, the return-mapping algorithm based on

a spectral decomposition of the stress is more

efficient. This concept is reviewed briefly below

and the reader is referred to other references for

details [16,17]. It is well known that any

symmetric matrix such as the effective stress

matrix can be factorized by the spectral

decomposition:

(46)

where Pn+1 is the non-singular matrix whose

columns are the orthonormal eigenvectors of n+1
and is the diagonal matrix of eigenvalues of

n+1. Moreover, since an isotropic material behavior is

assumed, there exists a function such that

. Thus, the plastic strain increment, , can

also be written in the spectral decomposition form

[17]:

(47)

As proved in [16], any eigenvector of matrix

n+1 is also an eigenvector of matrix , which

leads to the spectral decomposition form of :

(48)

By using the Drucker-Prager hyperbolic

plastic function as the flow rule, one can show

that by employing the spectral return-mapping

briefly discussed above, Eqs. (39) and (42) are

written in the context of their eigenvalues as the

following, respectively:

(49)

(50)

Moreover, since scalar degradation is assumed,

the stress is also decomposed by the same

eigenvectors as those of the trial effective stress

(i.e., P in Eq. (46)). This means that it can be

calculated as:

(51)

It is also worthwhile to mention that by

substituting Eqs. (43)-(45) and (50) into the

discrete version of plasticity consistency

condition (i.e., =0), the following1 1
ˆ ˆ( , )n nF

 22 Js
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relation is obtained for the consistency parameter, :

(52)

where is a new function defined as:

(53)

Since in equation (52) is dependent on ,

it cannot be explicitly computed. Furthermore,

needs to satisfy Eq. (44). Therefore the

consistency parameter is obtained from an

iterative strategy using these two relations.

3.3. Stress Calculation Procedure

Computation of stress is based on the classic

step by step iterative method which is composed of

elastic prediction and plastic-damage correction.

During this process, as well as stress, , other

variables such as , kt, kc, Dt and Dc are updated.

From an implementation point of view, it is more

convenient that Dt and Dc are considered as a

vector similar to k (i.e., D=(Dt Dc)T). The

computational procedure for the stress at step n+1
can be summarized as Table 2.

3.4. Consistent Algorithmic Tangent Stiffness

When the Newton-Raphson algorithm is

employed in global iterations, the rate of

convergence is strongly dependent on the

elastoplastic tangent stiffness. Using the

algorithmic tangent stiffness, which is consistent

with the local iteration as well, guarantees the

quadratic convergence in global iterations [16].

The consistent algorithmic tangent stiffness is

defined by combining the linearized equations

having been used in the local iteration algorithm

derived to compute stresses.

After the converged effective stresses and

damage variables are computed for the given

strain, all the residual equations, Eqs. (54)-(56),

are assumed to be satisfied.

(54)

(55)

(56)

Having equation (54), the total differential of

Q becomes:

(57)
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4.1. Return-mapping process (local iteration to compute 1 1
ˆ , ,n n λ+ +σ κ ) 

4.2.  
p
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σ

ε ∇  

4.3.   
p p p

1 11
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Table 2. Stress calculation procedure for an integration point

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

8-
26

 ]
 

                             9 / 17

https://www.iust.ac.ir/ijce/article-1-258-en.html


196 International Journal of Civil Engineerng. Vol. 8, No. 3, September 2010

which is expected to be zero (i.e.,dQ=0).

Taking this into consideration, the following

relation is obtained by rearranging this latter

equation:

(58)

where and would have the following

form, respectively: 

(59)

(60)

Similarly, from Eq. (55) the total differential of

function gives:

(61)

Substituting Eq. (58) into Eq. (61), it yields:

(62)

where and are defined as below: 

(63)

(64)

Moreover, based on Eq. (56), the total

differential of the stress becomes:

(65)

in which the total differential of the plastic strain

is:

(66)

By employing equation (66) and defining a

modified stiffness  , Eq. (65)

may be rewritten as:

(67)

Substituting Eq. (67) into Eq. (62), one obtains

the relation for :

(68)

which is substituted back into equation (67) to

obtain:

(69)

Furthermore, based on equation (36), the total

differential of the stress tensor is written as:

(70)

Since the total degradation, D, is a function of

k and the following

is concluded:

(71)

Substituting Eq. (58) into Eq. (71) gives the

differential of the degradation as:

(72)

where the following definitions for and

are being employed:

(73)

(74)

Eq. (70) could lead to the following form by

utilizing relation (72):

(75)

Employing Eqs. (68) and (69) in Eq. (75), the

consistent algorithmic tangent stiffness is

concluded:

(76)
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It is noted that the derived algorithmic tangent

stiffness, Eq. (76), is not symmetric. This is as the

result of non-associative flow rule and existence

of the degradation component.

4. Numerical Examples

This section describes numerical simulations

used to validate the implemented plastic-damage

model in its 3-D development. The numerical

algorithm discussed above has been implemented

in a special finite element program (i.e. SNACS

[18]) using a series of FORTRAN subroutines.

This part is divided into two subsections

including single-element tests and structural

application. In all executions, the model

parameters of , , p, s0 and 1 are equal to

0.12, 3.0, 0.2, 0.0 and 0.1, respectively.

Furthermore, in all cases =0.51 and =0.4 . It

should be also mentioned that the displacement

control approach is used to apply the loadings. 

4.1. Single-element Tests

The implementation is initially validated by

applying the model to evaluate the numerical

response of several examples for which

experimental results are available. Thereafter, the

results of some additional numerical tests are

presented. The first two verifications discussed

here confirm the basic capabilities of the present

plastic-damage model in representing tensile and

compressive behavior of concrete under

monotonic loading. For this purpose, one 8-node

isoparametric solid element with 2 x 2 x 2 Gauss

integration with lch=25.4 mm is used. For all

cases, unless otherwise specified, the following

material properties are utilized:

4.1.1. Monotonic Uniaxial Loadings

Performance of the model for the fundamental

loadings such as uniaxial tensile and compressive

loading tests is evaluated and compared with the

corresponding experiments and results from Lee

and Fenves by 2-D implementation. It should be

mentioned that in the uniaxial compressive case,

elastic modulus, E0 of 31.7 GPa is utilized instead

of 31.0 GPa. Fig. 3 depicts the simulated tensile

and compressive stress-strain curves,

respectively. It is observed that the numerical

results agree well with the experimental data and

also with the solutions of Lee and Fenves.

4.1.2. Monotonic Biaxial Loadings

To test numerical behavior of the model under

biaxial state of stresses, the test results for biaxial

cDtD

 

cG 
(N/m) 

tG 
(N/m)  

cf ′ 
(MPa)  

tf ′ 
(MPa)  

ν 
-  

0E 
(GPa)  

1750  12.3  27.6  3.48  0.18 31.0  

Table 3. Material properties for the one-element tests

Fig. 3. Monotonic uniaxial loadings compared with experiment [19,20], and also with Lee and Fenves study [9]; (a) tensile

test, (b) compressive test
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tensile case and compressive case are compared

with their uniaxial cases in Fig. 4a and 4b,

respectively. The same material data considered

for uniaxial loading are employed for these cases.

It is noted that as expected, the strength of

concrete is predicted to slightly decrease for the

biaxial loading in tension, while it shows a

significant increase for the biaxial loading in

compression.

4.1.3. Triaxial and Constrained Biaxial Tension Tests

In order to evaluate the implemented

procedure for the singularity treatment of the

apex, two examples including triaxial test and

constrained biaxial test are examined in this

subsection. 

Fig. 5a compares the numerical predictions for

triaxial case along with the uniaxial and biaxial

results obtained previously. The third direction is

restrained in the constrained biaxial test. It is

noted that tensile stress develops in that direction

as equal tensile strains are exerted in the other

two directions. Furthermore, the three tensile

stresses become equal at certain stage and remain

equal afterwards. From that point forward, states

of stresses correspond to the point on the apex of

the plastic potential surface. The result of this test

(Fig. 5b) demonstrates the capability of the

strategy adopted here to overcome this

singularity.

Fig. 4. Biaxial loading tests along with uniaxial responses: (a) tension, (b) compression

Fig. 5. (a) Uniaxial, biaxial, triaxial tensile loading results; (b) Constrained biaxial test
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4.1.4. Triaxial Compression Test

As mentioned above, Lubliner's yield function

contains a term, , which can better predict the

concrete behavior in compression under

confinement. The numerical results of the present

model for this type of loading are compared

between the case of =0 and =3. The material

properties adopted in the simulations are the same

as used for the uniaxial compression test. The

numerical predictions of specimens under three

sets of confining stresses, namely, 2= 3=0.0

MPa, 2= 3=-3.75 MPa and 2= 3=-7.50 MPa,

are reproduced in Fig. 6. It should be mentioned

that the confining stresses are increased

proportional to the imposed strain in the third

direction for all these cases. It can be clearly seen

that the enhancement of strength and ductility due

to the compressive confinement are satisfactorily

captured by the present model.

4.1.5. Cyclic Uniaxial Loadings

Herein, cyclic loading applications are presented.

The main objective is to examine the capability of

the model in capturing stiffness degradation in both

tensile and compressive loadings. The material

properties are the same as those of Table 3 except

E0=31.7 GPa and =0.38. Figs. 7a and 7b illustrate

the numerical results from two uniaxial cyclic

loading cases which are compared against the

experimental data in each case. 

For both cases, the stiffness degradation is

seen to be properly simulated at each

unloading/reloading cycle. However, it is noted

that hysteresis on reloading cannot be captured

by the model because of the rate-independent

elastic loading/unloading assumption. It is noted

that in some structures the dominant failure

mechanism is shear damage [21] which in this

plastic-damage model, both damages in tension

and compression are expected in such examples.

4.1.6. Full Cyclic Loading

In the last case, the single-element is subjected

to cyclic tensile-compressive-tensile load (Fig.

8). This perfectly illustrates the ability of the

model to simulate stiffness recovery when the

status changes from tension to compression and

vice versa. The tensile strength after compressive

loading is degraded and it means that the tensile

damage and the elastic stiffness are considerably

affected by the compressive damage. 

4.2. Structural Application

The analysis of a notched concrete beamcD

σ σ σ σ
σσ

γγ

γ

Fig. 6. curves under three different confinements: (a) = 0 and (b) = 3γγ1 1
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monotonically loaded under four-point bending is

investigated herein to examine the implemented

algorithm in a real 3-D application. This problem

has been extensively studied by researchers in

both experiments and numerical modeling

[22,23]. The specifications of the test are

illustrated in Fig. 9a. A 3D 8-node finite element

mesh for the symmetric left part of the specimen

is also shown in Fig 9b. 

The material properties used in this

application are defined in Table 4. It should be

mentioned that the size of the elements in the

expected localization zone is used here as the

characteristic length,  . To calibrate the material

data for the present model, slightly lower values

than in the experimental test investigated by

Hordijk [22] are assumed for the tensile strength

and fracture energy in tension. To evaluate the

Fig. 7. Cyclic uniaxial loading results in comparison with experimental result [19,20]:

(a) tensile test and (b) compressive test

Fig. 9. Four-point bending test: (a) geometry of the specimen and boundary conditions (b) 3D 8-node finite element mesh

Fig. 8. Numerical solution for full cyclic loading case
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accuracy of the solution, three analyses are

carried out with different number of increments;

these are 15, 30 and 60 equal steps which are

considered within the applied maximum

displacement. 

Fig. 10a shows the load P versus the load point

deflection for the numerical simulations and the

corresponding experimental test. The three

analyses excellently agree with one another,

confirming robust convergence of the algorithm

and good accuracy of the solution over a large

range of displacement increments. The damage

development at the end of the analysis is also

illustrated in Fig. 10b which is clearly showing

the localization in the model.

5. Conclusions

Constitutive relations of the plastic-damage

model proposed by Lee and Fenves are reviewed

and its computational aspects in 3-D

implementation mainly related to the singularity of

the original plastic potential function are discussed

in this paper. It should be noted that the

implementation and examples carried out by Lee

and Fenves were limited to 2-D plane stress

problems. In 3-D development, a part of the

implementation of the return-mapping process

needs to be reformulated due to employing the

Drucker-Prager hyperbolic potential function as a

treatment for the apex’s singularity of the linear one.

The effective stress concept is used to simulate

stiffness degradation. The numerical integration is

performed by the backward-Euler scheme, which is

known to give an unconditionally stable method.

The spectral return-mapping which has more

advantages with respect to the general return-

mapping is utilized. To model dilatancy of concrete

accurately, a non-associative flow rule which causes

unsymmetrical algorithmic tangent stiffness is used. 

Through the numerical examples by several

one-element tests, the implemented plastic-

damage model is known to give the results that

agree well with experimental data for concrete

under cyclic loading as well as monotonic

loading. It is also demonstrated that stiffness

degradation and crack opening/closing are

considered properly. In spite of the assumption of

isotropy in damage part of the model, this plastic-

damage model permits to obtain reliable results

in view of the prediction of the failure behavior

of concrete. The damage process in a notched

beam under four-point bending is investigated

numerically, where a comparison is also made

with the available experimental result. This real

application shows robustness and accuracy of the

implemented algorithm in capturing the global

softening behavior in concrete structures while it

is well representing the expected localization.
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